МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ БЛОКИ ОКОННЫЕ И ДВЕРНЫЕ МЕТОД ОПРЕДЕЛЕНИЯ ОБЩЕГО КОЭФФИЦИЕНТА ПРОПУСКАНИЯ CBETA WINDOWS AND DOORS

Method of determination of total light transmittance ΓΟCT 26602.4-99

Γ	руппа	Ж39

OKC 91.060.50

ОКСТУ 5309, 5209, 2209

Предисловие

1. Разработан Научно-исследовательским институтом строительной физики Российской Академии архитектуры и строительных наук, ОАО "Институт стекла" с участием Федерального центра по сертификации в строительстве при Госстрое России.

Внесен Госстроем России.

2. Принят Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС) 20 мая 1999 г.

За принятие проголосовали:

¬
Наименование Наименование органа государственного
государства управления строительством
++
Республика Армения Иминистерство градостроительства
Республики Армения
++
Республика Казахстан Комитет по делам строительства
Министерства энергетики, индустрии и
торговли Республики Казахстан
++
Кыргызская Республика Государственная инспекция по архитектуре
и строительству при Правительстве
Кыргызской Республики
++
Республика Молдова Иминистерство развития территорий,
строительства и коммунального хозяйства
Республики Молдова

Не является официальным изданием предназначено для ознакомительных целей. Бесплатно предоставляется клиентам компании «Древград» - деревянные дома.

	Федерация Госстрой России
+	+
Республика	Таджикистан Комитет по делам архитектуры и
1	строительства Республики Таджикистан
+	+
Украина	Государственный комитет строительства,
 	архитектуры и жилищной политики Украины
L	+

- 3. Введен впервые.
- 4. Введен в действие с 1 января 2000 г. в качестве государственного стандарта Российской Федерации Постановлением Госстроя России от 17 ноября 1999 г. N 63.

1. Область применения

Настоящий стандарт распространяется на оконные и остекленные дверные блоки жилых, общественных, производственных и других зданий и устанавливает метод определения общего коэффициента пропускания света этих изделий.

Метод может быть применен для определения общего коэффициента пропускания света витражей, витрин, зенитных фонарей и других светопрозрачных конструкций или их фрагментов, включающих в себя различные комбинации непрозрачных и светопропускающих элементов из различных видов стекол (прозрачных или окрашенных, без покрытий или с покрытиями, узорчатых, армированных, многослойных и т.д.).

Метод применяют для типовых, сертификационных и других периодических лабораторных испытаний.

2. Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.326-89 ГСИ. Метрологическая аттестация средств измерений

ГОСТ 8.332-78 ГСИ. Световые измерения. Значения относительной спектральной световой эффективности монохроматического излучения для дневного зрения

ГОСТ 2327-89 Выключатели, выключатели-разъединители, переключатели и переключатели-разъединители врубные низковольтные. Общие технические условия

ГОСТ 2388-70 Фотоэлементы селеновые для фотометрирования и колорирования пиротехнических средств. Общие технические требования

ГОСТ 7721-89 Источники света для измерений цвета. Типы. Технические требования. Маркировка

ГОСТ 8711-93 Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам

ГОСТ 15543-70 Изделия электротехнические. Исполнения для различных климатических районов. Общие технические требования в части воздействия климатических факторов внешней среды

ГОСТ 19798-74 Фотоэлементы. Общие технические условия

3. Термины, обозначения и определения

В настоящем стандарте применяют следующие термины с соответствующими определениями.

Фрагмент изделия - часть изделия, отражающая его основные конструктивные особенности и оптические характеристики.

Образец для испытаний - светопрозрачная ограждающая конструкция в сборе или ее фрагмент, пригодные для испытаний, технические характеристики которых полностью соответствуют представленным в испытательный центр (лабораторию) сопроводительной нормативной и конструкторской документации.

Светопрозрачная ограждающая конструкция - строительная конструкция, предназначенная для обеспечения естественного освещения внутренних помещений здания или сооружения.

Световой поток Ф, лм - величина, пропорциональная потоку излучения, с учетом относительной спектральной эффективности монохроматического излучения.

Освещенность Е, лк - отношение светового потока, падающего на рассматриваемый малый участок поверхности, к площади этого участка.

Средняя освещенность образца Е, лк - отношение светового потока, падающего на образец, к площади этого образца.

Коэффициент остекления оконного блока (или другой светопрозрачной конструкции) — - отношение площади светопрозрачной части оконного блока к его рабочей площади. В случае наличия в конструкции нескольких рядов остекления за площадь светопрозрачной части принимают площадь остекления ряда с наименьшей светопрозрачной частью.

Общий коэффициент пропускания света $^{\tau_{\perp}}$, отн. ед. - отношение светового потока, прошедшего сквозь изделие, к световому потоку, упавшему на него.

4. Аппаратура

Испытательная установка, состоящая из:

источника диффузного света типа A (искусственного небосвода отраженного света, окрашенного белой диффузно отражающей краской) по ГОСТ 7721;

светомерной камеры, окрашенной матовой белой диффузно отражающей краской, разделенной горизонтальной перегородкой с проемом и опорной решеткой в нем для установки испытываемого образца;

измерительного блока, состоящего из наружного и не менее трех внутренних фотоэлементов по ГОСТ 2388, ГОСТ 19798, откалиброванных по ГОСТ 8.332 для светоадаптированного глаза с линейной зависимостью силы тока от падающего на него светового потока с относительной погрешностью не более +/- 1%; микроамперметра по ГОСТ 8711 или гальванометра по нормативной документации, утвержденной в установленном порядке, не ниже 2-го класса точности и переключателя по ГОСТ 2327 для фотоэлементов;

темнителя света по ГОСТ 15543.

5. Порядок отбора и подготовки образцов к испытаниям

5.1. Испытания проводят на образцах, представляющих собой готовые изделия или фрагменты изделий, соответствующих требованиям, установленным в нормативной (конструкторской) документации на конкретную продукцию полной заводской готовности.

В случае, если результаты испытаний предполагается распространить на типоразмерный ряд (включающий испытываемую конструкцию), то для проведения испытаний выбирают конструкцию с наименьшим коэффициентом остекления. Минимальный размер образцов - 700 х 700 мм, максимальный размер образцов определяют техническими возможностями испытательной установки.

Рекомендуемые размеры образцов оконных блоков: высота - 1460 мм; ширина - 1470 (или 1320) мм.

Окна, как правило, должны быть двустворчатыми, с форточным узлом. Если конструкция предусматривает откидное или поворотно-откидное открывание узкой створки, наличие форточного узла не обязательно.

- 5.2. Порядок отбора и количество образцов для испытаний устанавливают в нормативной документации на конкретную продукцию. Рекомендуется испытывать не менее двух идентичных образцов.
 - 5.3. Подготовка образцов к испытаниям
- 5.3.1. Проверку комплектности конструкции и показателей внешнего вида образцов проводят визуально в соответствии с требованиями нормативной документации (далее НД) на испытываемые изделия.
 - 5.3.2. Проверку геометрических размеров образцов проводят с помощью средств измерений по методикам, приведенным в НД

5.3.3. Перед испытаниями изделия должны быть тщательно очищены от загрязнения и промыты.

6. Определение общего коэффициента пропускания света

6.1. Сущность метода

Сущность метода состоит в определении отношения величины светового потока $^{\Phi_r}$, лм, прошедшего сквозь изделие, к величине светового потока $^{\Phi}$, лм, падающего на это изделие из наружного пространства.

- 6.2. Порядок проведения испытания
- 6.2.1. Испытания проводят при значениях освещенности E = (500, 750, 1000) лк +/- 5%, создаваемой источником диффузного света на плоскости проема разделительной перегородки светомерной камеры.

В обоснованных случаях допускается разрабатывать уточненную программу испытаний с другими характеристиками условий проведения испытаний, согласованную испытателем и заказчиком.

- 6.2.2. Выполняют регулировку освещенности с помощью темнителя света и фиксируют ее величину.
- 6.2.3. Контроль освещенности осуществляют подключенным к микроамперметру или гальванометру фотоэлементом, установленным в источнике диффузного света горизонтально (наружный фотоэлемент) и обращенным приемной поверхностью от испытываемого изделия в соответствии с рисунком А.1.
- 6.2.4. Измерения светового потока, прошедшего через проем разделительной перегородки светомерной камеры, производят с помощью внутренних фотоэлементов, подключенных через переключатель к микроамперметру или гальванометру. Внутренние фотоэлементы должны быть закреплены внутри светомерной камеры и обращены приемной плоскостью в направлении от проема. Число внутренних фотоэлементов должно быть не менее четырех.
- 6.2.5. Испытываемый образец горизонтально устанавливают на опорную решетку в проеме разделительной перегородки светомерной камеры заподлицо с нижней плоскостью перегородки так, чтобы геометрический центр образца находился на вертикальной оси светомерной камеры.
- 6.2.6. Устанавливают ограничители проема разделительной перегородки по периметру оконного блока. Монтажные зазоры между образцом и проемом изолируют от прохождения света.
- 6.2.7. Измеряют силу тока фотоэлемента по показаниям микроамперметра или гальванометра, соответствующую световому потоку Φ_r , прошедшему через проем разделительной перегородки светомерной камеры с установленным в нем образцом.
- 6.2.8. Удаляют образец из проема разделительной перегородки светомерной камеры, не нарушая положения ограничителей проема.
- 6.2.9. Повторно измеряют силу тока фотоэлемента по показаниям микроамперметра или гальванометра, соответствующую световому потоку $^{\Phi}$, прошедшему через проем разделительной перегородки светомерной камеры без образца.
- 6.2.10. Измерения проводят при трех фиксированных значениях освещенности по 6.2.1 с интервалом в 5 мин. Результаты измерений для каждого образца заносят в таблицу Б.1.

7. Обработка результатов испытаний

7.1. Для каждого значения освещенности E вычисляют значение коэффициента пропускания света и относительную погрешность его определения по формулам:

, (1)

где m - количество внутренних фотоэлементов; $\Delta \tau$ - абсолютная погрешность определения коэффициента пропускания света при данной освещенности, отн. ед.;
г - коэффициент пропускания света изделием в относительных единицах, определенный і-м внутренним фотоэлементом при данном значении освещенности, рассчитанный с учетом относительной погрешности измерения по формулам:
, (3)
, (4)
где $n_{\rm r}$ - показания микроамперметра или гальванометра в делениях их шкалы с i-м внутренним фотоэлементом, пропорциональные величине светового потока $p_{\rm r}$, лм, прошедшего через проем разделительной перегородки светомерной камеры с
образцом; - показания микроамперметра или гальванометра в делениях их шкалы с i-м внутренним фотоэлементом, пропорциональные
величине светового потока $^{\Phi}$, лм, прошедшего через проем разделительной перегородки светомерной камеры без образца;
 ▲ т - абсолютная погрешность определения коэффициента пропускания света і-м фотоэлементом при данной освещенности, отн. ед.;
Δn_z - абсолютная погрешность измерения значения силы тока фотоприемника с исследуемым образцом в делениях шкалы микроамперметра или гальванометра;
- абсолютная погрешность измерения значения силы тока фотоприемника без образца в делениях шкалы микроамперметра или гальванометра.
7.2. Общий коэффициент пропускания света образца изделия , отн. ед., принимают равным среднеарифметическому значению результатов испытаний изделий, а относительную погрешность его определения принимают равной среднеквадратичному значению относительных погрешностей испытаний:
, (5)
, (6)
где 3 - число испытаний согласно 6.2.1.
7.3. При испытании двух и более идентичных образцов за общий коэффициент пропускания света изделия принимают наименьшее значение из полученных по результатам испытаний каждого образца. Относительную погрешность определения общего коэффициента пропускания света изделия в этом случае вычисляют как среднеарифметическое значение $\frac{\Delta r_{\ell}}{r_{\ell}}$ для испытанных
коэффициента пропускания света изделия в этом случае вычисляют как среднеарифметическое значение \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \
7.4. Допускается за относительную погрешность измерения общего коэффициента пропускания света принимать погрешность измерения установки, полученную в результате ее метрологической аттестации по ГОСТ 8.326.

8. Оформление результатов испытаний

Результаты испытаний оформляют протоколом, в котором указывают:

наименование испытательного центра (лаборатории), проводившего испытания;

номер аттестата аккредитации испытательного центра (лаборатории), проводившего испытания;

наименование и юридический адрес организации - заказчика испытаний;

наименование и юридический адрес организации - изготовителя испытываемой продукции;

наименование испытываемой продукции и документа, регламентирующего требования к ее качеству;

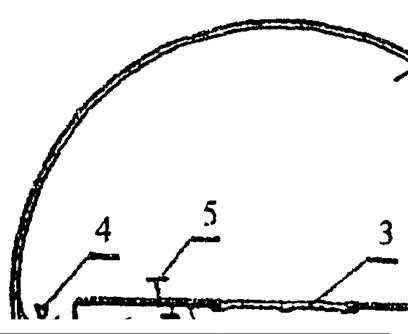
описание испытываемых образцов продукции: маркировка образцов, габаритные размеры образцов, тип использованного стекла, геометрические размеры сечений, вид окраски и др.;

отношение площади остекления к общей площади образца (коэффициент остекления);

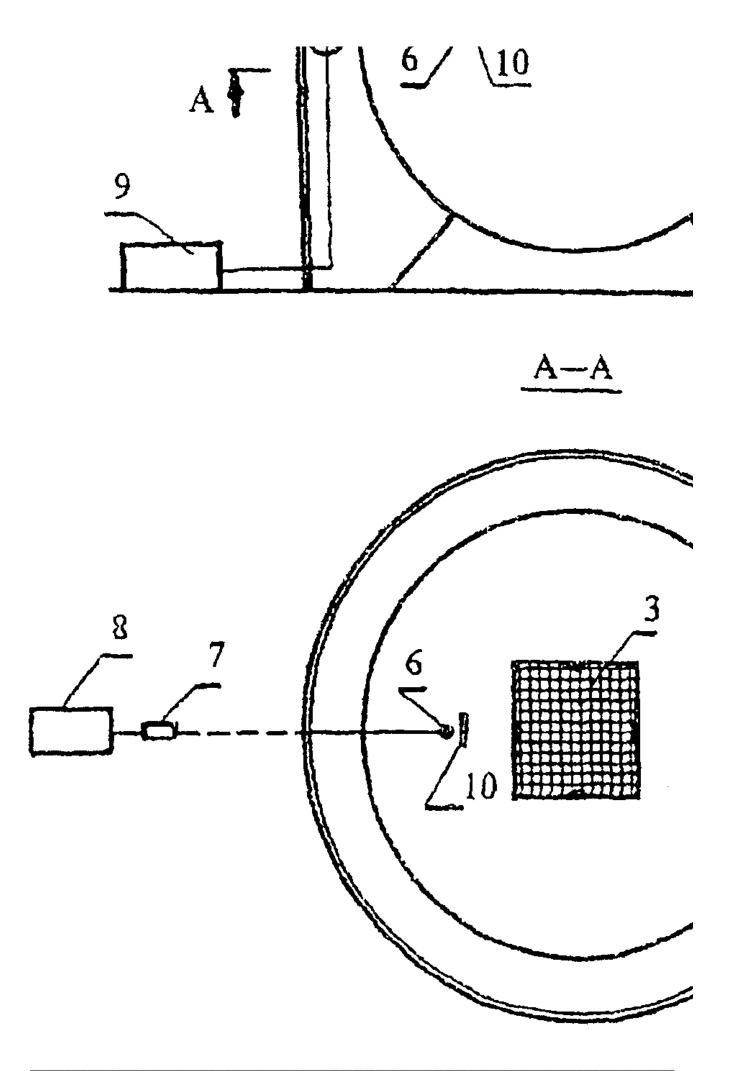
дату поступления образцов в испытательный центр (лабораторию);

номер регистрации образцов в испытательном центре (лаборатории);

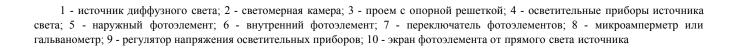
дату испытаний образцов;


результаты испытаний - по форме таблицы Б.1;

заключение: значение общего коэффициента пропускания света испытываемого образца (изделия) и относительной погрешности измерения;


подписи руководителя испытательного центра (лаборатории) и испытателя, печать испытательного центра.

Приложение A (обязательное)


УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ ОБЩЕГО КОЭФФИЦИЕНТА ПРОПУСКАНИЯ СВЕТА

Не является официальным изданием предназначено для ознакомительных целей. Бесплатно предоставляется клиентам компании «Древград» - деревянные дома.

Рисунок А.1

Приложение Б

(обязательное)

ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ И ОПРЕДЕЛЕНИЕ ОБЩЕГО КОЭФФИЦИЕНТА ПРОПУСКАНИЯ СВЕТА ОБРАЗЦА ИЗДЕЛИЯ

Таблица Б.1

]	ΓT	`	T	`T	Г¬	
Показан	ия галі	ьва-¦Но	мер ¦Пока	зания гальв	ванометра,	Коэффициент Коэффици- Общи	й¦
нометра	, подкл	ію- ¦вну	т- ¦подклі	юченного к	внутрен- ¦і	пропускания ент про- коэффи-	
ченного	к нару	ж- ¦рен	него¦ним (ротоэлемен	там, с	вета при пускания циент	
ному фо	тоэле-	фото	- соответ	ствующие	величине ¦д	данном зна- света для пропус-	
менту, с	оответ	ст-¦элем	иен-¦светон	вого потока	а, прошед-¦	чении осве- каждого кания	
вующие	велич	ине ¦та	шего ч	ерез проем	свето- ще	енности, значения света	
горизонт	гально	й ¦(1	m)¦мерной	і камеры	¦опред	деленной освещен- образца	
освещен	ности,	.	+	-T	-+і-м внутр	рен- ности тау	
создавае	мой		с оконным	ı ¦без оконі	ного¦ним ф	ротоэле-¦тау L	
источни	ком ди	тф- ¦	¦блоком і	n ¦ блока	n ¦ментом	итау ј	
фузного	света		тау¦	i ¦	i	1	
						++	
				5			
						++	
						++	
				¦ +		++	
·	ı		1	ı	1 1		

Не является официальным изданием предназначено для ознакомительных целей. Бесплатно предоставляется клиентам компании «Древград» - деревянные дома.

СВЕДЕНИЯ О РАЗРАБОТЧИКАХ СТАНДАРТА

Настоящий стандарт разработан рабочей группой исполнителей в составе:

- В.А. Земцов, канд. техн. наук (руководитель), НИИСФ РААСН;
- В.Г. Гагарин, канд. техн. наук, НИИСФ РААСН;
- А.Г. Чесноков, канд. техн. наук, ОАО "Институт стекла";
- О.А. Емельянова, ОАО "Институт стекла";
- В.С. Савич, ГП ЦНС;
- Н.В. Шведов, Госстрой России.